(16:137:562) Applied Artificial Intelligence (AI) from Concept to Market

Course Number
16:137:562
Credits
3
Prerequsites
You must have programming experience to take this course. (16:137:552) Python Methodologies, or the equivalent.
Semesters(s) Offered
Spring
Description

Learn the processes for specifying, designing, and launching for commercialization AI/deep learning products using available software platforms, with a detailed examination of one of the major tools. Work in teams throughout the semester to apply learned business and technical concepts to launch a virtual AI/deep learning product.

Course Objectives

Upon successful completion of the course, be able to:

  • Discern traditional computational models from those used in AI and Machine Learning (ML)
  • Have a greater understanding of Deep Learning methods within the context of ML
  • Familiarity with popular Deep Learning Architectures such as CNN, RNN, RL, LSTM, GAN, Transformers, Autoencoder, Attention Networks
  • Familiarity with Application Frameworks for Deep Learning such as: Python, Keras, TensorFlow, Jupyter Notebooks, Kaggle, etc.
  • Understand the business framework needed to identify, develop and present a coherent plan for funding a business for the AI Product

Testimonials

Course Testimonials

"In the Applied AI course you actually get to code and learn about deep neural networks. This is a very valuable skill in the field of analytics." - Shivani Sethi, Analytics, MBS'20